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In the present paper we study the onset of chaos in the differential delay equation 
i-(f) = -X(I) + bx( t - 2)/( 1 + xt”( I - 2)), b > 0. We develop a new numerical technique and 
apply it to study the global behavior of the flow on the attractor. Using this technique, we find 
unstable periodic orbits, connections between different periodic orbits, transverse homoclinic 
orbits, and try to explain the underlying reason for chaos. 0 1988 Academic Press, Inc. 

INTRODUCTION 

In this paper we study the onset of chaos in differential delay equations. We 
develop a new numerical technique and apply it to obtain results of theoretical 
interest. 

As a model we consider the following equation: 

i(t) = ax(t) + b 
x(t - t) 

1 +x”(t-r)’ 

where n is an integer, a < 0, and 6, r > 0. This equation describes different periodic 
diseases and was studied numerically by L. Glass and M. C. Mackey [S, 61, 
U. an der Heiden and M. C. Mackey [f2], and J. D. Farmer [2]. 

In the first three of these papers the authors fixed three of the four parameters 
and integrated the equation numerically. As they were changing the fourth 
parameter, they observed Hopf bifurcation to a stable periodic orbit, a series of 
period doubling bifurcations, and chaotic behavior of the solutions. J. D. Farmer’s 
work [2] was different. He tried to understand more about the attractor by com- 
puting its embedding dimension and found that during a chaotic regime, the 
embedding dimension of the attractor is at least equal to four. His computations 
also indicated that the system has a strange attractor. However, none of the existing 
numerical computations has led to an explanation of what is the underlying reason 
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for chaos, why the embedding dimension of the attractor is at least four, or what 
the behavior of the flow is for different values of the parameter. Our goal in this 
paper is to come closer to an answer to all of these questions. 

It has been known since the time of Poincart that a chaotic regime is associated 
with certain types of homoclinic orbits of a hyperbolic periodic orbit. This 
phenomenon was formalized by S. Smale [23], L. P. Sil’nikov [22], N. K. Gavrilov 
and L. P. Sil’nikov [3], S. Newhouse and J. Palis [20], S. Newhouse [ 181. But at 
present it is not known why such chaos occurs even for ordinary differential 
equations. Many authors think that the onset of chaos and the appearence of 
strange attractors is due to the creation of a homoclinic tangency, that is, the 
creation of a tangency between the stable and unstable manifolds of a hyperbolic 
periodic orbit [ 193. 

Let us recall that a homoclinic orbit to a hyperbolic periodic orbit is any orbit 
(except the periodic orbit) that belongs to both the stable and unstable manifold of 
the periodic orbit. The homoclinic orbit is transversal if the tangent spaces of the 
stable and unstable manifolds of the Poincare map at each point of intersection 
span the space. The existence of a transverse homoclinic orbit always implies 
the existence of chaos in the sense of T. Y. Li and J. A. Yorke [17] (see, for 
example, [ 91). 

Throughout this paper, we think of the given delay equation as defining a flow 
on the space C= C( [ -r, 01, R) of continuous real valued functions on C-t, 01. 
For any function q E C there is a unique solution $8, 9) of the given equation 
defined for t> -r such that x(t, cp)=&t)for all t~[-r,O]. The flow q~!#‘(t)cp 
is defined by (V(t) q)(8) = x(t + 8, cp), 8 E [ -5, 01. With this notation periodic 
orbits become closed curves in C, and in this space one can define the above 
concepts of stable and unstable manifolds of a periodic orbit, the Poincare map, 
hyperbolicity, and homoclinic orbits. 

Homoclinic tangencies and transverse homoclinic orbits for scalar delay 
equations have been constructed in specific cases by H.-O. Walther [25], 
U. an der Heiden and H.-O. Walther [ 141, U. an der Heiden and M. C. Mackey 
[ 131, J. K. Hale and X.-B. Lin [ 111. These examples show that homoclinic orbits 
do occur in delay equations. In [lo], J. K. Hale and X.-B. Lin proved that if there 
is a homoclinic orbit for a general retarded fuctional differential equation, then 
there is an arbitrarily small perturbation of the vector field such that the perturbed 
equation has a transverse homoclinic orbit. We now ask if there is a homoclinic 
orbit for the system that we shall consider and are there connections between 
different periodic orbits. 

In our model we choose a = - 1, n =, 10, T = 2, and b as a parameter. 
The local analysis we give in Section 1 shows that for b x 1.34 a Hopf bifurcation 

to a stable T-periodic orbit does take place. From the computations done by 
U. an der Heiden and M. C. Mackey [12] we know that this periodic orbit 
becomes unstable due to a period doubling bifurcation. The computations of 
U. an der Heiden and M. C. Mackey [ 123 as well as the ones in [S, 6, 21 proceed 
in the following manner: starting with a given initial function, integrate the 
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equation and observe the stable limiting solutions. The way in which the initial 
function is chosen plays no essential role. However, if one is careful in the 
specification of the initial function, more information can be obtained about the 
behavior of the flow. In the study of a dynamical system, the global behavior of the 
flow is determined by the unstable sets, not by the stable ones. If we could know the 
exact behavior of the unstable manifold of the T-periodic orbit, we would be able to 
understand the global behavior of at least some solutions of the given dynamical 
system. Therefore, we must find a numerical scheme that will enable us to follow 
the unstable manifold of the T-periodic orbit. 

The idea is simple: integrate the equation starting with the initial data sufficiently 
close to the unstable T-periodic orbit. Since the unstable manifold is a stable set, we 
obtain a good approximation of the typical flow on it (see [9] and 
Lambda-Lemma in [26]). There is, however, a major difficulty. How can we find 
the initial data for an unstable periodic orbit, which being unstable, cannot be 
approximated by integrating the equation? In fact, we need completely different 
methods from these used in [ 12, 5,6, 23. 

We have been able to find the initial data by tracing the bifurcation branch that 
corresponds to the T-periodic orbit, using the homotopy continuation method. 
This method has been used before by E. L. Allgower and C.-S. Chien [ 11, 
H. B. Keller [ 163, K. Georg [4], and others to study bifurcation diagrams of 
elliptic equations, and of a specific delay equation. Similar ideas were used by 
E. Doedel [27] in the case of parabolic partial differential equations. As an 
integration technique we use the spectral method that was introduced by K. Ito and 
R. Teglas [ 151 primarily for linear delay equations. Although our equation is non- 
linear, this method continues to provide sufficiently good accuracy. A detailed 
description of our numerical scheme is given in Section 3. 

The main advantage of our algorithm is that it makes it possible to find unstable 
peiodic orbits, heteroclinic and homoclinic orbits, and to follow certain solutions 
which until now could not be observed numerically. It also provides a better 
understanding of the flow on the attractor. Using our scheme to study the dynamics 
of the given system for different values of the parameter, we obtain a number of 
results that are described in detail in Section 2. The following is an outline of those 
results. 

For b z 1.56 we observe the first period doubling bifurcation to a stable 
2T-periodic orbit. There is a connection between the T-periodic and 2T-periodic 
orbits. 

For b x 1.72 the 2T-periodic orbit becomes unstable and a 4T-periodic orbit 
appears. There are connections between the orbits of period T and 2T, the orbits of 
period T and 4T, and the orbits of period 2T and 4T. 

For 1.725 <b < 1.74 several period doubling bifurcations occur. As a result, we 
observe new periodic orbits of period 8T, 16T, and 32T. 

Furthermore, there is a parameter value b,, 1.74 <b, < 1.77 such that for b = b, 
there is a homoclinic tangency between the stable and the unstable manifolds of the 
T-periodic orbit. 
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For b = 1.77 there is a transverse homoclinic orbit. 
We suspect that the creation of a homoclinic tangency occurs in the following 

way. The period of some stable periodic orbit continues to increase and, as b 
approaches bO, some point on this orbit approaches the T-periodic orbit, giving the 
homoclinic tangency. 

In order to understand more about the attractor, one must study the changes in 
the characteristic multipliers of the T-periodic orbit. It turns out that for b < 1.8 the 
unstable manifold of the Poincart map for the T-periodic orbit is one dimensional. 
For b z 1.8 a saddle-node bifurcation from the T-periodic orbit takes place and the 
unstable manifold becomes two-dimensional. The dominant multiplier inside the 
unit circle is real, but for b z 1.93 it becomes complex. In all of these cases, the 
transverse homoclinic orbit still exists. This suggests that one would need a four- 
dimensional analog of the Henon map to model the Poincare map for the flow on 
the attractor, which coincides with J. D. Farmer’s result on the embedding dimen- 
sion of the attractor. 

Further study is obviously required here, but that would go beyond the goals of 
the present paper. 

As mentioned before, the creation of some homoclinic orbits leads to the creation 
of a horseshoe map, to infinitely many periodic orbits, and to the onset of chaos. 
We suspect that our system behaves in a similar way. It is quite possible that a two- 
dimensional unstable manifold leads to the creation of more homoclinic orbits. In 
addition, a complex dominant characteristic multiplier inside the unit circle could 
also lead to the creation of generalized Sil’nikov [21] type orbits. All this could 
cause chaotic behavior of the flow. 

1. LOCAL ANALYSIS 

Consider the differential delay equation 

i(t)= -x(t)+b 
x(t-2) 

1 +x’O(t-2)’ 

where b > 0 is a parameter. 

(1) 

PROPOSITION. (a) Zf b < 1, then x0 = 0 is the unique equilibrium solution of the 
given equation, and it is stable. 

(b) A pitchfork bifurcation from the trivial equilibrium solution x0 takes place 
at b = 1, and x0 becomes unstable. 

(c) Zf b > 1, then the given equation has three equilibrium solutions: x0 = 0, 
x1 = (b - 1)“” and x2 = -x1. Moreover, there exists a parameter value b = b, > 9 
such that x1 and x2 are stable for all 1 < b < 6,. 

(d) There is a Hopf bifurcation from x, to a positive periodic orbit, and from 
x2 to a negative periodic orbit at b = b,. 
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FIG. 1. The stable T-periodic orbit at b = 1.516; Tx 5.5. 

Remark. Numerical computations, done in Section 3, show that the Hopf bifur- 
cation from x, occurs at the parameter value b ,, z 1.34. As a result, a stable positive 
periodic orbit of period T= 5.5 appears (see Fig. 1). 

We first prove the following lemma. 

LEMMA. Consider the equation 

z= -1 +de-” (2) 

over the field of complex numbers, where d # 0 is a parameter: 

(a) If 0 < d < 1, then ail solutions z of (2) have negative real parts. 

(b) There exists a value d, < 0 such that Eq. (2) has a pure imaginary solution 
at d= do. 

Proof of the Lemma. (a) Let 0 cd< 1 be arbitrary, but fixed. Let z = p + iv. 
Using Eq (2), we obtain for p and v the system of equations 

p= -1 +dep2pcos(2v) 

v = -de-2p sin(2v). (3) 

Assume there exists a solution (pO, vO) of the system (3) such that p,, > 0. Let 
h(p) = dep2p. Since h is a strictly monotone decreasing function of fl and since 
h(0) = d< 1, it follows that h(p,,) < 1. Therefore, 

p. = - 1 + de-2M cos(2v,) < 0. 

This contradicts the assumption. 

(b) Suppose Eq. (2) has a pure imaginary solution z = iv,, v0 E R, for some 
parameter value d = d,. This leads to the system of equations 

0 = - 1 + d, cos(2v,) 

v,, = -d, sin(2v,), 
(4) 

or, equivalently, 

v0 = - tan(2v,). (5) 
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If v0 is a positive solution of Eq. (5), then 

-;+;n<vo<;n, n = 1, 2, 3, . . . . 

A solution v,, of (5) can be chosen so that d, = l/cos(2v,) < 0. The pair (d,,, v,,) then 
satisfies the system (4). Therefore z = iv, is a solution of (2). This completes the 
proof of the lemma. 

Proof of the Proposition. (a) Let b < 1. All the equilibrium solutions of the given 
equation are obtained by solving the equation for x 

-x+b 
X 

1 
= 0. (6) 

Therefore, x = 0 is the unique equilibrium solution of (1). 
In order to study the stability of the trivial solution, we have to consider the 

solutions of the characteristic equation about x = 0: 

A= -1 +be-*“. (7) 

Part (a) of the lemma implies that all solutions of Eq. (7) have negative real parts, 
and therefore, x0 is stable (see [ 83). 

(b) The characteristic equation about x = 0 is given by (7). Obviously, A= 0 
is a solution of (7) for b = 1. For b > 1, it follows from (6) that the given 
equation (1) has three equilibrium solutions, namely, x0 = 0, x1 = (b - l)““, and 
x2 = -xi. Hence, for b = 1, a pitchfork bifurcation takes place. Moreover, the 
implicit function theorem implies that for any parameter value b > 1 but close to 1, 
Eq. (7) has a real-valued solution A. 

Suppose all real-valued solutions 1 of (7) are negative for b > 1. Let h(l) = be-*“. 
Since h is a strictly monotone decreasing function of 1 and since h(0) = b > 1, it 
follows that h(A) > 1. Therefore, 

A= -1 +be-*“>O. 

This contradicts the assumption. So, A> 0 and the trivial solution is unstable. 

(c) In part (b) we showed that Eq. (1) has three equilibrium solutions x0, xi, 
and x2 for b > 1. The characteristic equation about x1 is 

A= -1 +Be-*“, (8) 

where B = (10 - 9b)/b. Since b > 1, it follows that B < 1. 
If 1 < b < 10/9, we have 0 < B < 1, and part (a) of the lemma implies that 

Re(A) < 0 for all solutions A of (8). 
If b = $‘!, then B = 0, and it follows that 1= - 1 is a solution of (8). 
Furthermore, part (b) of the lemma implies that there is a parameter value B, < 0 
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such that Re(A) = 0 at B = BO. This means there is a parameter value b0 > y such 
that Re(1) = 0 at b = 6,. Since Re(A) is a continuous function of b and since 
Re(l) # 0 for all b E (1, b,), we obtain that Re(l) < 0 for all b E (1, b,). This implies 
that the equilibrium solution x, of the given equation (1) is stable. Since xi and x2 
have the same characteristic equation, x2 is also stable. 

(d) We already know that for b = b, Eq. (8) has a solution A0 =pO + iv,, 
where pLo = 0, and v0 E R. 

The second condition for the occurence of a Hopf bifurcation is (see [S] ) 

dW4 ,. 
db h = bo 

We now show that this condition is also satisfied. 
Let ,u = Re(A) and v = Im(1). It is easy to see, using (3) at d= B, that 

dp 10 -c---e 
db b2 

-*Cl cos(2v) - 2Be-2p cos(2v) g- 2Be-*” sin(2v) 2, 

and 

dv 10 -z-e 
db b2 

-2v sin(2v) + 2Be-2p sin(2v) $-- 2BeC*” cos(2v) $. 

Using (4) at do = B,, we obtain 

&L(~o, vo, bo) d/Go> vo> bo) 

db 
= -; cos(2v,) - 2B, cos(2v,) 

0 

db 

- 2B, sin(2v,) dvbo, vov bo) db 

10 
=--- 

Bobi 

2 dcl(~o, vo, bo) + 2v dvbo, vo, 6,) 

db db ’ 

and 

dv(po, vo, 6,) 10 . 
= p sm(2vo) + 2Bo sin(2v,) d&c,, vo, bo) - 2B, cos(2v,) dvbo, vo, bo) 

db 0 

db db 

lOv, =--- 2v d&o, vo, bo)- 2 dvbo, vo> bo) 
Bobi ’ db db 

This implies that 

(9 + 4v;) dp(po;;op bo) = - &j!$ (3 + 2+. 
0 0 

581!77/1-15 
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Since B, < 0, it follows that 

4003 “03 bo) > o 

db ’ 

By uniqueness, we see that the new periodic solution must remain positive for all 
time. Since the positive and the negative equilibrium solutions have the same 
characteristic equations, this completes the proof of the proposition. 

2. GLOBAL BEHAVIOR OF THE FLOW AS SUGGESTED BY NUMERICAL COMPUTATIONS 

In order to understand the global behavior of solutions of the given differential 
delay equation, we have to analyze different periodic orbits, establish connections 
between them, find homoclinic orbits, and understand the structure of the attractor. 
Because of the symmetry property of the given equation, the corresponding positive 
and negative solutions behave in a similar way. Throughout the rest of this paper 
we will study the behavior of the flow only near the positive periodic solutions. The 
first step is to compute the characteristic multipliers of the stable T-periodic orbit 
for different values of the parameter b (see Table I). We obtain the following results. 

For the stable T-periodic orbit the two dominant multipliers of the Poincare map 
are real; one is negative, the other is positive. As b increases, the negative multiplier 
decreases and the positive one increases. 

At b z 1.56 the negative multiplier becomes less than - 1. This indicates that a 
period doubling bifurcation has taken place. As a result, the T-periodic orbit 
becomes unstable and a stable 2T-periodic orbit appears. The unstable manifold of 
the Poincare map for the T-periodic orbit is one-dimensional. The dominant 
multiplier inside the unit circle is real and increases as b increases. 

In order to find the connection between the two orbits, we follow the unstable 
manifold of the T-periodic orbit. An approximation of the flow on the unstable 
manifold of the T-periodic orbit for b z 1.61 is shown on Fig. 2. We see that the 
unstable manifold leaves the neighborhood of the T-periodic solution and 
approaches the 2T-periodic solution. This suggests that the flow for the Poincare 
map behaves as shown in Fig. 3. 

In Fig. 4 we can see the changes in the shape of the 2T-periodic orbit as b 
changes, but the global behavior of the flow remains the same. 

For b c 1.72 the approximated unstable manifold of the T-periodic orbit 
approaches a 4T-periodic solution (see Fig. 5). This suggests that a period doubling 
bifurcation from the 2T-periodic orbit to a stable 4T-periodic orbit has taken place 
and that the 2T-periodic orbit has become unstable. Since the 4T-periodic orbit is 
stable, the o-limit set of points on the unstable manifold of the 2T-periodic orbit 
must be the 4T-periodic orbit. Thus, there is a connection between the 2T- and 4T- 
periodic orbits. Before the bifurcation to the 4T-periodic orbit occured, the unstable 
manifold of the T-periodic orbit and the stable manifold of the 2T-periodic orbit 
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TABLE I 

Characteristic Multipliers 

b 

0.151699982043810+01 

0.155794551702760 + 01 

0.156084281196150+01 

0.158687959079SOD + 01 

0.161075160290380 + 01 

0.16868077724021D +Ol 

0.17200017867492D + 01 

0.177850494837940 + 01 

O.l7995624671759D+Ol 

0.182011239778790 + 01 

0.184158556735260+01 

0.193405102928140+01 

Real part Imaginary part 

-0.756035161203480+00 
0.449698539623050 - 02 
0.281299409888840 + 00 
0.18107808017625D - 02 

-0.990824386938670 + 00 
0.155295816559260 -02 
0.392158750482490 + 00 
0.24907420850717D - 02 

-0.102143389111490+01 
0.710936720349230 - 03 
0.414970187980770 + 00 
0.253096959480210 - 02 

-0.116180114029520+01 
-O.l4016873175338D-02 

0.50994592530421D + 00 
0.333143679269030 - 02 

-0.125481775331190+01 
-0.224071971295490-02 

0.570166970232390 + 00 
0.4154461239802SD-02 

-0.149031721967810+01 
- 0.4463846 17662420 - 02 

0.762890215215OSD + 00 
0.856189623248260 - 02 

- 0.15648 1096680890 + 01 
-0.511389011543220-02 

0.844912542767850 + 00 
0.128670830548570-01 

-0.165315658096530+01 
-0.57182989050311D-02 

0.966393782247140 + 00 
-0.249233199lllOOD - 01 
-0.167202767672700 + 01 
-0.573206576990730 - 02 

0.100228066091180+01 
-0.169841420036980-01 

-0.1683019769039SD + 01 
-0.55747522959105D - 02 

0.10333664668497DfOl 
-0.115392916717700-01 

-0.168723155112470+01 
-0.50189983705182D-02 

0.10711365769648D + 01 
-0.65553566268OOSD - 02 

-0.167372844737020 + 01 
-0.392675722389150-02 

0.10985839ooO9020 + 01 
-0.261885433633490 - 02 

0.000000000000000 + 00 
-0.658396338957620 - 02 

0.000000000000000 + 00 
0.000000000000000 + 00 

0.000000000000000 + 00 
-0.615607076669970-02 

0.000000000000000 + 00 
0.000000000000000 + 00 

0.000000000000000 + 00 
-0.504423365129350 - 02 

0.000000000000000 + 00 
O.-D + 00 

0.000000000000000 + 00 
-0.320989539773120 -02 

0.000000000000000 + 00 
0.000000000000000 + CO 

0.000000000000000 + 00 
-0.279039444082870 - 02 

0.000000000000000 + 00 
0.000000000000000 + 00 

0.000000000000000 + 00 
-0.174441252970240-02 

0.000000000000000 + 00 
0.000000000000000 + 00 

0.000000000000000 + 00 
-0.291165424223650 -02 

0.000000000000000 + 00 
0.000000000000000 + 00 

0.000000000000000 + 00 
-0.533196150264910-02 

0.000000000000000 + 00 
0.000000000000000 + 00 

0.000000000000000 + 00 
-0.613994509680250 - 02 

0.000000000000000 + 00 
0.000000000000000 + 00 

0.000000000000000 + 00 
-0.688352008845750 - 02 

0.000000000000000 + 00 
0.000000000000000 + 00 

0.000000000000000 + 00 
-0.773643704446960 - 02 

0.000000000000000 + 00 
0.000000000000000 + 00 

0.000000000000000 + 00 
-0.836404675663720 - 02 

0.000000000000000 + 00 
0.000000000000000 + 00 
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FIG. 2. The solution on the unstable manifold of the T-periodic orbit approaching the 2Tperiodic 
orbit at b = 1.61. 

.a w  
2T T 2T 

FIG. 3. The flow on the unstable manifold of the Poincare map at b = 1.61. 

x(t) f 

I 

I ,,,, 
i 0 50 100 150 --zoo 250 --zs’-- 350 ‘- 400 (1) 

FIG. 4. The solution on the unstable manifold of the T-periodic orbit approaching the 2Tperiodic 
orbit at b = 1.68. 

I  

/ - - -  _ I -_  ~-1 -  -  .  _--L A~- ~~-- ) 
0 50 100 150 200 250 300 350 400 (1) 

FIG. 5. The solution on the unstable manifold of the T-periodic orbit approaching the 4T-periodic 
orbit at b = 1.72. 

4T 

4T 

FIG. 6. The flow on the unstable manifold of the Poincare map at b = 1.72: 0 a typical orbit on the 
unstable manifold approaching the 4T-periodic orbit; l the connection of the T-periodic orbit to the 2T- 
periodic orbit. 
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FIG. 7. The bifurcation diagram for 0 < b < 1.72 in the space C x R: __ the equilibrium solution; 
-the T-periodic solution; --- the ZT-periodic solution; - l -the 4T-periodic solution. 

‘i 
L* 
0 i0 lb0 Ii0 200 250 300 350 400 (1) 

FIG. 8. The solution on the unstable manifold of the T-periodic orbit approaching the 8T-periodic 
orbit at b = 1.725. 

x(t) I 

FIG. 9. The solution on the unstable manifold of the T-periodic orbit approaching the 16T-periodic 
orbit at b= 1.735. 

ILhh ., . , . . 1. , 
3;;;o. 

_ 1_---~. ..-3 
0 50 100 150 200 250 350 400 (1) 

FIG. 10. The solution on the unstable manifold of the T-periodic orbit approaching the 32T-periodic 
orbit at b= 1.74. 
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FIG. 11. The transverse homoclinic orbit at b = 1.77 for 0 < I < 400. 

were transversal. They should therefore remain transversal after the bifurcation 
takes place. This shows that there is a connection between the T- and 2Tperiodic 
orbits. It also implies that there is a connection between the T- and 4Tperiodic 
orbits. In fact, almost all initial data close to the T-periodic orbit should approach 
the 4T-periodic orbit; that is, numerically, one should not observe the connection 
between the T- and 2T-periodic orbits. This is confirmed in Fig. 5. The flow for the 
Poincare map is indicated in Fig. 6. 

The behavior of the characteristic multipliers for the T-periodic orbit did not 
change. The two dominant multipliers are real. One is outside the unit circle, 
negative, and decreases as b increases getting farther away from - 1. The other is 
inside the unit circle, positive, and increases as b increases getting closer to 1. 

So far we have the bifurcation diagram as shown in Fig. 7. 
For 1.725 6 b < 1.74 several period doubling bifurcations occur (see Figs. 8-10). 
For b z 1.77 (see Figs. 11, 1 la) we notice that the computed solution, which 

approximates the unstable manifold, leaves the neighborhood of the T-periodic 
solution, but after a while it returns into the neighborhood of the T-periodic 
solution. This picture keeps repeating itself, which indicates that there is a transver- 
sal intersection of the stable and unstable manifold of the T-periodic orbit. The 
transversality was checked by observing numerically that the same phenomenon 
occurs when the initial data is perturbed. From Figs. 11, 1 la, it follows that there 
must be some value of the parameter 1.74~ b,< 1.77 for which there is a 
homoclinic tangency. 

It is very difficult to give an explanation of what happens in the parameter range 
1.74 to 1.77. Up to the parameter value b = 1.74 we observe several period doubling 
bifurcations, and we also know that a homoclinic tangency must occur at some b,,, 
1.74 <b, < 1.77. From the general theory of the creation of homoclinic tangencies, 
it is known (see, for example, [3]) that there always can be a sequence of period 
doublings as well as transient chaos for some values of b as b approaches b, from 
below. The orbits that come from the general theory, however, are always unstable. 

450 '500 5io' 600 .6jo. i60- -750- 8007, 

FIG. 1 la. The transverse homoclinic orbit at b = 1.77 for 400 < I < 800. 
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FIG. 12. The transverse homoclinic orbit at b = 1.8. 

On the other hand, it is possible that there are still some stable periodic orbits 
whose periods become very large, and as b approaches b,, some points of those 
approach the T-periodic orbit. A closer inpsection of Fig. 10 suggests that this is the 
case. In fact, one observes a distinctive peak at t = 20, 103, 160, 220 which is 
reproduced and is approximately equal to the T-periodic orbit. If this speculation is 
correct, then the creation of the homoclinic tangency is clear. The period of some 
stable periodic orbit continues to increase and, as b approaches bo, some point on 
this orbit approaches the T-periodic orbit. This implies the existence of a 
homoclinic orbit to the T-periodic orbit at b = b,. 

Two other interesting phenomena happen as b increases. For b z 1.80 the 
dominant characteristic multiplier of the T-periodic orbit inside the unit circle 
becomes greater than 1. This means that a saddle-node bifurcation from the 
T-periodic orbit has occured. The unstable manifold of the T-periodic orbit 
becomes two-dimensional. 

The dominant characteristic multiplier of the T-periodic orbit inside the unit 
circle is real, decreases as b increases, and for b x 1.93 becomes complex. In both 
cases the transverse homoclinic orbit still exists (see Fig. 12). This suggests that one 
would need a four-dimensional analog of the Henon map to model the Poincare 
map for the flow on the attractor. 

It is quite possible that a two-dimensional unstable manifold leads to the creation 
of more homoclinic orbits. In addition, a complex dominant characteristic 
multiplier inside the unit circle could also lead to the creation of a Sil’nikov type 
orbit [21]. All of this could cause chaotic behavior of the flow. 

3. FOLLOWING THE UNSTABLE MANIFOLD 

In this section we present the numerical scheme for following the unstable 
manifold of the T-periodic orbit that has enabled us to obtain the results described 
in the previous section. 

Main Idea and Strategy 

The main idea is to integrate the equation with initial data close to the unstable 
T-periodic orbit. Then the computed solution will approximate the typical flow on 
the unstable manifold. In order to find the. initial data, we use the following 
strategy: 
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(a) Choose b* < 1.34, but close to this value, and the pair (x*, b*), where 
x* = (b* _ I)‘/10 represents a point on the bifurcation branch which corresponds to 
the positive equilibrium solution (see Fig. 7). 

(b) Use the homotopy continuation method to follow this branch to the 
bifurcation point at (x, b) where b x 1.34. This is the point where Hopf bifurcation 
takes place. 

(c) At the bifurcation point switch to the branch that corresponds to the 
stable T-periodic orbit (see Fig. 7). 

(d) Trace this branch beyond the bifurcation point (x, b), b x 1.56, where the 
first period doubling bifurcation takes place. Any pair (x, b) beyond this bifurcation 
point represents a point on the bifurcation branch such that x is the initial data of 
the unstable T-periodic solution for the parameter value b > 1.56. 

(e) In order to follow the unstable manifold of the T-periodic orbit, integrate 
the given equation using the initial data obtained in (d). 

Integration Technique and Discretization 

In order to integrate the given equation numerically, we use the spectral method 
which was proposed in [15] for perturbed linear systems. 

Let C = C( [ - 2,0], R) be the space of all continues functions from [ - 2,0] into 
R. For any cp E C there is a unique solution x(t) of the given equation defined for 
t> -2 such that x(@=cp(0) for all 0~ C-2,0]. 

Let z(t, 0) = x(t + 19) where x is a solution of the given equation and 8 E [ - 2,0]. 
Any smooth solution z then satisfies the boundary value problem 

z, = z, 

with the boundary condition 

z,(t, 0) =f(z(t, 01, z(t, -211, 

where 

f(z(t, O), z(t, -2))= -z(t, 0)+ b z(t7 -2) 
1 + z’O(t, -2) 

and with the initial condition 

zp,q =x(e), eE[-2,0]. 

If we know the solution z(t, 0) of this boundary value problem, we can find the 
solution x(t) of the given differential delay equation using the relation 

x(t) = z(t, 0) 

for all t 2 0. 
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In order to integrate the boundary value problem, we use the well-known 
spectral method (see [7, 241) which proceeds as follows. 

Choose a number of collocation points B,,, . . . . 8, in the interval [ -2,O] and a 
basis (QO, . . . . @,) in the approximation space B such that the matrix 
( Qi( 0, + 1)) ;, i = 0, __,, n is nonsingular. Then, define the projection operator I7 from C 
into B by 

z7z(t, e)= i u,(t) Qj(e+ l), 
j=O 

where ai E R are solutions of the system of linear equations 

nz(t, ei) = z(t, ei) 

for all i = 0, . . . . n, and all t z 0. 
In order to find the solution z(t, 0), it is sufficient to determine the coefficients 

a,(t) in the series expansion. 
As an approximation basis let us choose the Legendre polynomials, and as 

collocation points let us choose (e,, . . . . 0,) such that e. + 1, . . . . 8, + 1 are the zeros 
of the Legendre polynomial of order n + 1. With this notation, we have 

z(t, ej) = i uj(t)pj(ei + 1) 
j=O 

for all 0 d i < n where p, is the Legendre polynomial of order j. 
Moreover, the following equations hold 

Z,(t, ei)= f UJt)pj(ei+ 1) 
J=o 

and the well-known identities for Legendre polynomials [7] imply that 

n-l 

zo(C ei) = C bj(f) Pj(ei + 11, 
j=O 

where 

bj(t)=(2j+ l) i Uk(f).  

k=j+I,j+kodd 

Furthermore, since p,( 1) = 1 and pj( - 1) = ( - 1 )j, it follows that 

z(f, O) = i uj(c)bpj(l) = i uj(t), 

j=O j=O 



236 HALE AND STERNBERG 

and 

z(t, -2)= f uj(t)pj(-l)= f (-l)‘uj(t). 
j=O j=O 

Substituting all of these equations into the boundary value problem, we find that 

up) = b,(t), o<j<n- 1, 

z,(t,O)= f u;(r)=a:,(t)+nfbj(t) 
j=O j=O 

=t.( i uj(t), f (m11juj(r))3 
/=O j=O 

and 

for all 0 < i < n. 

Z(O, Oi)= ~ Uj(O)P,(Bi+ l)=X(ei) 
j=O 

In other words, we have to solve the system of ordinary differential equations 

UJ t) = b,(t), O<j<n- 1, 

n-l 

u;(t)= c b,(t)+f i Uj(l), 2 (- l)“Uj(Q 
j=O ( j=O j=O ) 

with the initial condition u(O) = (u,(O), . . . . u,(O)) such that 

u(0) = @-lx, 

where 

poteo+ 1) ... prlteo+ 1) 

@= i ; . . . ; Poten + 1) ... price,+ 1) 1 
and x = (x(0,), . . . . x(0,)). 

Choosing a Homotopy Map 

Our goal now is to find the initial data of unstable periodic orbits for diffrent 
values of the parameter. We know that xJt) is a T-periodic solution of the given 
differential delay equation for a fixed arbitrary parameter b if and only if its initial 
data x,(B), 0 E [ -2,O], is a fixed point of the Poincart map P: IR + C, defined by 
(P,)(O) = x(6 + T), 8 E [ - 2,0], where R denotes the domain of P. 

As it was observed in [ 123, the period T remains almost constant as b varies as 
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long as the T-periodic orbit is stable. Since we use the collocation approximation 
for the integration of the given equation and since the collocation points are not 
uniformly distributed in the interval [ -2,O], small changes in the period .should 
not affect our computations. Hence we assume that the period T remains the same 
for all values of the parameter 6. The assumption that the T-periodic solution has a 
period very insensitive to b is confirmed by the numerical computations given 
below. With this assumption, it follows that for any pair (xb(0), b) E Q x R, x,(8) is 
the initial data of the T-periodic orbit for the parameter value b if and only if 
(x,(B), 6) is a zero of the map H: Q x R + C, defined by H = id 1 R - P. 

In order to find the initial data of the T-periodic solution for different values of 
the parameter b, we therefore must solve the equation 

H(x, b) = 0, (9) 

where x~L2 and b > 0. This can be done by using the homotopy continuation 
method. For a basic description of this method and further references see [ 1, 16, 41. 
The set of all the zeros of the homotopy map H is the branch of the bifurcation 
diagram in the space C x R that corresponds to the T-periodic solution (see Fig. 7) 
and since the homotopy continuation methods enables us to follow different bifur- 
cation branches beyond the bifurcation point, we will obtain initial data for the 
T-periodic orbit even after it becomes unstable. 

In order to detect the period doubling bifurcation, we have to compute the 
characteristic multipliers of the T-periodic orbit, i.e., the spectrum of the Jacobian 
of the Poincare map, since this type of bifurcation cannot be observed otherwise. 
Indeed, a study of how the characteristic multipliers change in response to changes 
in the parameter is itself an interesting question. 

The homotopy continuation method can be used only if we approximate Eq. (9) 
by a finite dimensional problem. This can be done because P is a compact operator 
[S] and so we can use the collocation approximation described above. Moreover, 
the spectrum of P is discrete and 0 is its only accumulation point. 

In order to use the scheme that we have described, it remains only to find the 
value of the period T. We know that for b 0 x 1.34 a Hopf bifurcation from the fixed 
point x z 1 occurs. Choose b > b, but close to b,, and choose the initial condition 
x(e,) = . . . =x(0,) = 1. Since the periodic orbit is stable, we approximate it simply 
by integrating the given delay equation numerically. Analysis of the resulting data 
has shown us that Tz 5.5. 

Discussion 

The numerical method that we have described has enabled us to study the 
qualitative behavior of solutions of the given differential delay equation. It has 
allowed us to follow the unstable manifold of a periodic solution, which is the key 
to an understanding of the behavior of the flow on the attractor. The method 
makes it possibile to establish connections between different solutions and to find 
homoclinic orbits. 
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Although the spectral method was introduced in [lS] primarily for perturbed 
linear delay equations, we found it to be an accurate scheme for a nonlinear 
equation. We also have checked the accuracy in the cases n = 32 and n = 7. 

The algorithm has performed well even though we knew only an approximate 
value for the period of the T-periodic orbit. Small changes in the period T did not 
affect our computations. 

In Fig. 1, one can see that the vector obtained by using our scheme is indeed the 
initial condition of the stable T-periodic orbit. This further illustrates the good 
performance of the algorithm. 

The algorithm can also be used to find other branches of the bifurcation diagram 
for the given delay equation and to study the behavior near other periodic 
solutions. Choosing initial data in the proposed way not only increases the 
accuracy of the computations, it also enables us to follow certain solutions on the 
attractor which previously could not be observed numerically. It is this last ability 
that is the main advantage of the numerical scheme that we have described. 
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